Faculty Research
Our scientists perform high-quality, collaborative research to advance scientific discoveries in cancer biology, vascular biology, neurobiology, stem cells, maternal and fetal health, aging, infection, and development. Our outstanding research environment serves as an excellent training milieu for undergraduate and graduate students, as well as post-doctoral researchers.
Explore our research areas below.
Genome Dynamics, Epigenetics, and Gene Expression
DNA Replication and Repair; Transcription; Mobile DNA
This group focuses on understanding the underlying cellular mechanisms that regulate chromosome structure and function, as well as gene expression, in normal and diseased states. Techniques used include bioinformatics, proteomics, genomics, molecular biology, structural biology, epigenetics, and genetics of model organisms.
Human Genetics and Clinical Biochemistry
Disease-Based Research; Clinical Studies
Scientists in the Human Genetics and Clinical Biochemistry group perform basic research of the molecular causes behind specific human diseases and/or clinical studies involving specific human diseases. This research integrates state-of-the-art molecular technologies and bioinformatics with clinical work, so that basic research discoveries can be translated into effective treatments and cures for patients.
Signal Transduction and Intracellular Communication
Signalling Pathways
Researchers in the field of Signal Transduction and Intracellular Communication investigate the mechanisms and role of cellular signalling pathways in the regulation of fundamental biological processes. These events include cell proliferation, cell survival, differentiation, and development. This research exploits such techniques as bioinformatics, genomics, proteomics, cellular and molecular biology, structural biology, and transgenic and knockout technologies.
Macromolecular Structure and Dynamics
Protein Biochemistry; Structural Biology
Members of the Macromolecular Structure and Dynamics Group study the role that specific proteins and protein systems play in certain diseases, with a focus on understanding protein function at the atomic and molecular levels. This group frequently uses biophysical techniques and conventional molecular biology to determine the 3-D structure, dynamics, and interactions of biomolecules. Methods include NMR spectroscopy, crystallography, proteomics, and mass spectrometry.
Proteomics
Biomolecular Characterization; Disease-Based Research
This group uses proteomic techniques to understand normal cellular processes and alterations in these processes in diseases such as cancer, fetal disorders, and oral diseases. Through biomolecular identification and characterization, this group aims to develop prognostics, diagnostics, and therapeutics for these diseases.
Bioinformatics
Disease Prediction; Protein Coevolution; Biocomputing
This group applies bioinformatic approaches to further understanding of biological processes. In addition to computational and information technologies, this group uses genomics, molecular biology, and high-throughput sequencing.